Attribute reduction from congruences

Roberto G. Aragón Jesús Medina Eloísa Ramírez-Poussa

Department of Mathematics. University of Cádiz, Spain

Departamento de Matemáticas III HARMONIC 2018 November 1st.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Introduction Preliminary notions Reducing a context in FCA based on RST Introducing congruences Conclusions and future work

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

FCA and RST

- Two fundamental mathematical tools for modelling and processing incomplete information in databases are Rough Set Theory (RST) and Formal Concept Analysis (FCA).
- Both theories extract information from databases, which contain a set of objects, a set of attributes and a relationship between them.
- In spite of considering different philosophies, rough set theory and formal concept analysis are closely related.

Attribute reductions

- One of the principal targets in both theories is to reduce the number of attributes, preserving the information that can be obtained from the database.
- To this end, reducts (minimal set of attributes preserving the main information) have been studied in a number of papers, in these two frameworks.
- These theories have been related in different papers but few of them have studied the connections between the attribute reduction mechanisms given in both frameworks.

Contributions

- In this work, we will present a new mechanism to reduce formal contexts in FCA, based on the philosophy of attribute reduction in RST.
- We reduce a context in FCA considering the reducts of the associated context information system.
- We will show that this kind of reduction satisfies interesting properties.

- We will illustrate them by means of an example.
- Hence, this work introduces a new and different way of reducing a formal context in FCA.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

Rough set theory

Definition

 (U, \mathcal{A}) , where U and \mathcal{A} are finite, non-empty sets of objects and attributes, respectively. Each a in \mathcal{A} corresponds to a mapping $\bar{a}: U \to V_a$, where V_a is the value set of a over U.

Example

	Temperature	Headache	
<i>x</i> ₁	Hight	Yes	
<i>x</i> ₂	Normal	Yes	
<i>x</i> 3	Hight	Yes	
<i>x</i> 4	Low	No	

D-indiscernibility relation

D-indiscernibility relation

For every subset D of A, the D-indiscernibility relation, Ind(D), is defined as the equivalence relation

$$\operatorname{Ind}(D) = \{(x_i, x_j) \in U \times U \mid \text{ for all } a \in D, \overline{a}(x_i) = \overline{a}(x_j)\}$$

where each class given by this relation can be written as $[x]_D = \{x_i \mid (x, x_i) \in \text{Ind}(D)\}$. Ind(D) produces a partition on U.

Consistent set and reduct in RST

The following notions will be essential in the relationship between RST and FCA considered in this work.

Definition

Let (U, A) be an information system and a subset of attributes $D \subseteq A$. D is a *consistent set* of (U, A) if

 $\operatorname{Ind}(D) = \operatorname{Ind}(\mathcal{A})$

Moreover, if for each $a \in D$ we have that $Ind(D \setminus \{a\}) \neq Ind(A)$, then D is called *reduct* of (U, A).

Discernibility matrix and function

The discernibility matrix of (U, A) is the $n \times n$ matrix O, defined by, for i and j in $\{1, ..., n\}$,

Definition

Given an information system (U, A), its *discernibility matrix* is a matrix with order $|U| \times |U|$, denoted as M_A , in which the element $M_A(i,j)$ for each pair of objects (i,j) is defined by:

$$M_{\mathcal{A}}(i,j) = \{ a \in \mathcal{A} \mid \bar{a}(i) \neq \bar{a}(j) \}$$

and the *discernibility function* of (U, A) is defined by:

$$au_{\mathcal{A}} = igwedge \left\{ igwedge (M_{\mathcal{A}}(i,j)) \mid i,j \in U ext{ and } M_{\mathcal{A}}(i,j)
eq arnothing
ight\}$$

Generating all the reducts

The following result relates the discernibility function to the reducts of an information system.

Theorem

Given a boolean information system (U, A). An arbitrary set D, where $D \subseteq A$, is a reduct of the information system if and only if the cube $\bigwedge_{a \in D} a$ is a cube in the restricted disjunctive normal form(RDNF) of τ_A .

Formal concept analysis

We consider a set of attributes A, a set of objects B, both of them non empty, and a crisp relationship between them $R: A \times B \rightarrow \{0,1\}$. A *context* is the triple (A, B, R) and we can define the mappings:

$$X^{\uparrow} = \{a \in A \mid \text{for all } b \in X, aRb\}$$
 (1)

$$Y^{\downarrow} = \{ b \in B \mid \text{for all } a \in Y, aRb \}$$
(2)

Definition

A concept in the context (A, B, R) is a pair (X, Y), where $X \subseteq B$, $Y \subseteq A$, $X^{\uparrow} = Y$ and $Y^{\downarrow} = X$ hold. The subset of objects X is called *extent* and Y the *intent*.

The set of all the concepts is denoted as $\mathcal{B}(A, B, R)$, which has a complete lattice structure, when we consider the inclusion ordering on the left argument.

Formal concept analysis

Note that the operators defined in previous equations form a Galois connection. Taking into account this fact:

- Given an attribute a ∈ A, the concept generated by a, that is
 (a[↓], a^{↓↑}), will be called attribute-concept.
- Given an object b ∈ B, the concept generated by b, that is (b^{↑↓}, b[↑]), will be called object-concept.

Consistent set and reduct in FCA

Definition

- Let (A, B, R) be a context, if there exists a set of attributes $Y \subseteq A$ such that $\mathcal{B}(A, B, R) \cong \mathcal{B}(Y, B, R_{|Y})$, then Y is called a *consistent* set of (A, B, R).
- If $\mathcal{B}(Y \setminus \{y\}, B, R_{|Y \setminus \{y\}}) \not\cong \mathcal{B}(A, B, R)$, for all $y \in Y$, then Y is called *reduct* of (A, B, R).

Notational conventions

- A reduct of the information system (U, A) will be called <u>RS-reduct</u> and a reduct of the context (A, B, R) as <u>CL-reduct</u>.
- A consistent set of the information system (U, A) will be written in short as *RS-consistent set* and a consistent set of the context (A, B, R) as *CL-consistent set*.

In addition, from now on, as it is usual in real-life knowledge systems, the sets of attributes and the set of objects will be considered finite.

Irreducible elements of a lattice

Finally, we will recall the notions of meet-irreducible and join-irreducible elements of a lattice.

Definition

Given a lattice (L, \preceq) , such that \land, \lor are the meet and the join operators, and an element $x \in L$ verifying

1. If *L* has a top element \top , then $x \neq \top$.

2. If
$$x = y \land z$$
, then $x = y$ or $x = z$, for all $y, z \in L$.

we call x meet-irreducible (\land -irreducible) element of L. Condition (2) is equivalent to

2'. If x < y and x < z, then $x < y \land z$, for all $y, z \in L$.

A join-irreducible (\lor -irreducible) element of L is defined dually.

Introduction Preliminary notions Reducing a context in FCA based on RST Introducing congruences Conclusions and future work

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

Context information system

Definition

Let (A, B, R) be a context, a *context information system* is defined as the pair (B, A) where the mappings $\bar{a} : B \to V_a$, with $V_a = \{0, 1\}$, are defined as $\bar{a}(b) = R(a, b)$, for all $a \in A, b \in B$.

Lemma

Given a context (A, B, R) and the corresponding context information system (B, A), the following equality holds, for each $a \in A$:

$$a^{\downarrow} = \bar{a}$$

Relating CL-consistent sets to RS-consistent sets

The following result was given in **[Wei and Qi. 2010]** shows that, in some sense, the attribute reduction in FCA implies an attribute reduction in RST.

Theorem

Given a context (A, B, R) and the corresponding context information system (B, A). If $D \subseteq A$ is a CL-consistent set then Dis an RS-consistent set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The counterpart of this Theorem is not true, even though considering a small information system.

Attribute reduction in FCA based on RST

The proposed attribute reduction mechanism is carried out in the following way:

- Given a context (A, B, R), we consider the corresponding context information system.
- We compute the RS-reducts of this information system.
- We reduce the original context according to the obtained RS-reducts.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We analyze the properties satisfied by such reduction.

Preserving the number of object-concepts

The first one proves that different object-concepts in the original context provides different object-concepts in the reduced contexts.

Proposition

Let (A, B, R) be a context and (B, A) the corresponding context information system. Considering $D \subseteq A$ a RS-consistent set of (B, A) and the objects $k, j \in B$, if $k^{\uparrow} \neq j^{\uparrow}$, then $k^{\uparrow_D} \neq j^{\uparrow_D}$.

This result implies that the reduction given by an RS-consistent set preserves the number of object-concepts.

Preserves the inequality between object-contexts

Now, we show that the reduction given by a RS-consistent set also preserves the (strict) inequality between object-concepts.

Proposition

Given a context (A, B, R) and its corresponding context information system (B, A). If $D \subseteq A$ is a RS-consistent set of (B, A) and we consider two objects $k, j \in B$ satisfying that $k^{\uparrow} < j^{\uparrow}$, then the inequality $k^{\uparrow_D} < j^{\uparrow_D}$ holds.

No new join-irreducible elements in the lattice

The following theorem proves that the join-irreducible elements in the reduced concept lattice by an RS-consistent set are also join-irreducible elements of the original concept lattice.

Proposition

Given a context (A, B, R), the corresponding context information system (B, A) and $D \subseteq A$ a RS-consistent set. If an object $j \in B$ generates a join-irreducible concept in the concept lattice associated with the context (D, B, R), then it also generates a join-irreducible concept of the concept lattice associated with (A, B, R).

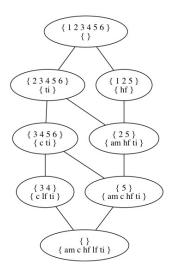
Let us consider the formal context (A, B, R), where B represents a group of six patients and A is the set of symptoms (attributes).

R	l.fever(lf)	h.fever(hf)	cough(c)	tonsil infla.(ti)	a.muscle(am)
1	0	1	0	0	0
2	0	1	0	1	1
3	1	0	1	1	0
4	1	0	1	1	0
5	0	1	1	1	1
6	0	0	1	1	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Preliminary notions Reducing a context in FCA based on RST Introducing congruences Conclusions and future work

Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Now, we will reduce the context taking into account RS-reducts. In this case, we obtain the following discernibility matrix:

$$\begin{cases} \varnothing \\ \{\text{ti}, \text{am}\} & \varnothing \\ \{\text{lf}, \text{hf}, \text{c}, \text{ti}\} & \{\text{lf}, \text{hf}, \text{c}, \text{am}\} & \varnothing \\ \{\text{lf}, \text{hf}, \text{c}, \text{ti}\} & \{\text{lf}, \text{hf}, \text{c}, \text{am}\} & \varnothing & \varnothing \\ \{\text{c}, \text{ti}, \text{am}\} & \{\text{c}\} & \{\text{lf}, \text{hf}, \text{am}\} & \emptyset \\ \{\text{hf}, \text{c}, \text{ti}\} & \{\text{hf}, \text{c}, \text{am}\} & \{\text{lf}\} & \{\text{hf}, \text{am}\} & \varnothing \\ \end{cases}$$

From this matrix, we obtain the discernibility function,

$$\tau_{A} = \{ \mathsf{lf} \land \mathsf{c} \land \mathsf{am} \} \lor \{ \mathsf{lf} \land \mathsf{hf} \land \mathsf{c} \land \mathsf{ti} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consequently, we have two RS-reducts:

- $D_1 = \{$ low fever, cough, ache muscle $\}$
- $D_2 = \{$ low fever, high fever, cough, tonsil inflam. $\}$
- We will use these RS-reducts to reduce the original context.
- Once we have the reduced contexts, we will build the concept lattices associated with these two RS-reducts.
- We will see that the structure of the original concept lattice is not necessarily preserved when we consider RS-reducts.

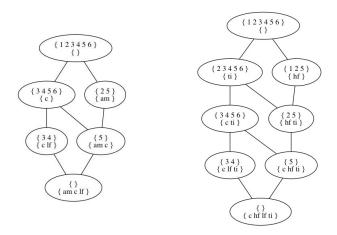


Figure: Concept lattices built from the RS-reducts D_1 (left) and D_2 (right).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Considering D₂ we do not alter the original structure of the concept lattice since this RS-reduct is also a CL-reduct. Hence, the previous results trivially hold.
- When we consider the concept lattice obtained from the RS-reduct *D*₁:
 - We also reduce the size of the concept lattice.
 - The objects 2, 3, 4, 5 generate join-irreducible concepts of the concept lattice B(D₁, B, R_{|D₁}) and they also generate join-irreducible concepts of B(A, B, R).
 - No new join-irreducible element is created after the reduction.

The inequalities among object-concepts are preserved:

• For example, we have that $2^{\uparrow} < 5^{\uparrow}$ in the original context, and the inequality $2^{\uparrow_1} < 5^{\uparrow_1}$ holds after the reduction.

This is interesting because it shows that two objects that were differentiated, continue being different after the reduction.

- Thus, the new mechanism satisfies useful properties and preserves the necessary information to distinguish the objects.
- Specifically, we have removed attributes ensuring that patients with different symptoms will continue being different.

Open question

What are the properties a good reduction mechanism should have?

- Subset??
- Sublattice??
- Fuzzy transformation: hedges, thresholds, etc.??
- Preserving indiscernibility objects??
- etc.

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

Congruences

- We write a ≡ b (mod θ) or (a, b) ∈ θ to indicate that a and b are related under the equivalence relation θ.
- An equivalence relation θ on a set A gives rise to a partition of A into non-empty disjoint subset. These subsets are the blocks of θ, which are of the form [a]_θ = {x ∈ A | x ≡ a (mod θ)}.
- We say that an equivalence relation θ on a lattice L is compatible with join and meet if, for all a, b, c, d ∈ L,

$$a\equiv b \pmod{ heta}$$
 and $c\equiv d \pmod{ heta}$

imply

$$a \lor c \equiv b \lor d \pmod{\theta}$$
 and $a \land c \equiv b \land d \pmod{\theta}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Congruence

An equivalence relation on a lattice L, which is compatible with both join and meet is called a *congruence* on L.

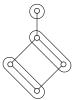


Figure: A congruence indicated by placing loops on a lattice.

Quotient lattices

Quotient lattices

Given an equivalence relation θ on a lattice *L* there is a natural way to try to define operations \lor and \land on the set of blocks

 $L/\theta = \{[a]_{\theta} | a \in L\}.$

Namely, for all $a, b \in L$, we define

$$[\mathsf{a}]_ heta \lor [\mathsf{b}]_ heta := [\mathsf{a} \lor \mathsf{b}]_ heta$$
 y $[\mathsf{a}]_ heta \land [\mathsf{b}]_ heta := [\mathsf{a} \land \mathsf{b}]_ heta.$

 \lor and \land are well defined on L/θ if and only if θ is a congruence. When θ is a congruence on L, we call $\langle L/\theta, \lor, \land \rangle$ the quotient lattice of L modulo θ .

Example of quotient lattices

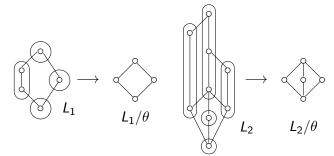


Figure: Some examples of congruences and the resulting quotient lattice.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

The following lemmas are handy when calculating with congruences.

Lemma 1

i. An equivalence relation θ on a lattice L is a congruence if and only if, for all $a, b, c \in L$,

$$a \equiv b \pmod{\theta} \Rightarrow \begin{cases} a \lor c \equiv b \lor c \pmod{\theta} & \text{and} \\ a \land c \equiv b \land c \pmod{\theta} \end{cases}$$

ii. Let θ be a congruence on L and let a, b, c ∈ L.
a. If a ≡ b (mod θ) and a ≤ c ≤ b, then a ≡ c (mod θ).
b. a ≡ b (mod θ) if and only if a ∧ b ≡ a ∨ b (mod θ).

Structure properties

Lemma 2

Let θ be a congruence on a lattice *L* and let *X* and *Y* be blocks of θ .

- i. $X \leq Y$ in L/θ if and only if there exist $a \in X$ and $b \in Y$ such that $a \leq b$.
- **ii.** $X \multimap Y$ in L/θ if and only if X < Y in L/θ and $a \le c \le b$ implies $c \in X$ or $c \in Y$, for all $a \in X$, all $b \in Y$ and all $c \in L$.
- iii. If $a \in X$ and $b \in Y$, then $a \lor b \in X \lor Y$ and $a \land b \in X \land Y$.

Blocks of a congruence

Block properties

- The blocks of a congruence are certainly sublattices and are convex.
- Furthermore, let L be a lattice and suppose that {a, b, c, d} is a 4-element subset of L. Then a, b and c, d are said to be opposite sides of the quadrilateral (a, b; c, d) if a < b, c < d and either

$$(a \lor d = b \text{ and } a \land d = c)$$
 or $(b \lor c = d \text{ and } b \land c = a)$

Then, we say that the blocks of a partition of *L* are *quadrilateral-closed* if whenever *a*, *b* and *c*, *d* are opposite sides of a quadrilateral and *a*, *b* \in *A* for some block *A* then *c*, *d* \in *B* for some block *B*.

Example

Figure: Opposite sides of a quadrilateral.

イロト イ理ト イヨト イヨト

æ

Theorem

Let L be a lattice and let θ be an equivalence relation on L. Then θ is a congruence if and only if

- i. each block of θ is a sublattice of L,
- ii. each block of θ is convex,

iii. the blocks of θ are quadrilateral-closed.

The lattice of congruences of a lattice

- We could define congruence to be those subsets of L^2 which are both equivalence relations and sublattices of L^2 .
- The set of congruences on a lattice L, denoted by Con L, is easily seen to be a topped ∩-structure on L². Hence Con L, when ordered by inclusion, is a complete lattice.
- The least element, 0, and the greatest element, 1, are given by 0 = {(a, a)|a ∈ L} y 1 = L².

Principal congruence

The smallest congruence collapsing a given pair of elements a and b is denoted by $\theta(a, b)$; it is called the *principal congruence* generated by (a, b).

$$\theta(a,b) = \bigwedge \{ \theta \in \text{Con } L | (a,b) \in \theta \}.$$

The next lemma indicates why principal congruences are important:

Lemma 3

Let *L* be a lattice and let $\theta \in Con L$. Then

$$\theta = \bigvee \{ \theta(a, b) | (a, b) \in \theta \}.$$

Consequently the set of principal congruences is join-dense in Con L.

The smallest congruence

Let L be a lattice and let $H \subseteq L^2$. We denote by $\Theta(H)$ the smallest congruence relation such that $a \equiv b \pmod{\Theta}$ for all $(a, b) \in H$.

We have two important results:

Lemma 4

For any $H \subseteq L^2$, $\Theta(H)$ exists.

Lemma 5 $\Theta(H) = \bigvee \{ \Theta(a, b) | (a, b) \in H \}.$

One of the most important results is the following one:

Theorem

The lattice Con L is distributive for any lattice L.

Example

Let us consider a context whose associated concept lattice is given in the Figure below.

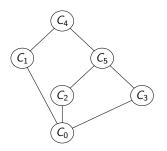


Figure: Concept lattice of the context.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Example

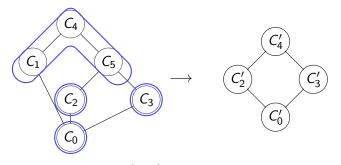


Figure: Equivalence relation (blue) obtained from RS-reduct and its concept lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

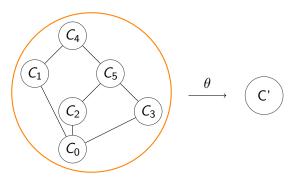


Figure: The smallest congruence (orange) containing the equivalence relation obtained from RS-reduct.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Let us consider a context whose associated concept lattice is given in the Figure below.

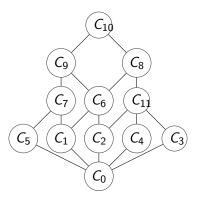


Figure: Concept lattice of the context.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Example

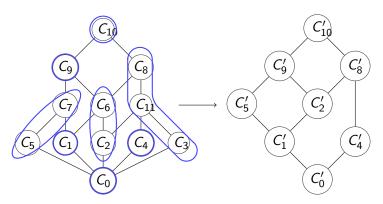


Figure: Equivalence relation (blue) obtained from RS-reduct and its concept lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

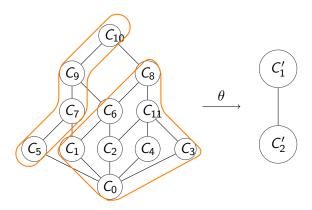


Figure: The smallest congruence (orange) containing the equivalence relation obtained from RS-reduct.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Preliminary notions

Reducing a context in FCA based on RST

Introducing congruences

Conclusions and future work

Conclusions and future work

- We have shown in this work that the attribute selection procedure given in RST is not equivalent to the attribute reduction in FCA.
- We have proven that the attribute selection mechanism given in RST has different interesting properties when it is applied in the FCA framework.
- These interesting properties provides the possibility of applying the philosophy of RST in order to obtain a reduction in the number of attributes of a context in FCA.
- In the future, we will apply the philosophy of bireducts within the FCA framework and we will also analyze the possible interpretation of this kind of reduction.

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?